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Summary: The Schtillkopf bislactim ether asymme& ammo acid synthesis was coupled with a 
subsequent enzyme mediated ester hydrolysis to generate a practical synthesis of both D and L 
enantiomem of Fmoc-AbutPO@CH2CH=C!H2)&OH (6). With this building block phosphoaapeptide 
isosteres of serine phosplqqtides sre accessible by Pmoc-solid phase peptide synthek. 

Due to the importance of protein phosphorylation in biology them is currently sign&ant interest 

and effort towatd synthesizing phosphopeptides and hydrolysis stable analogs thereof.’ We have been 

particularly interested in the synthesis of peptides incorporating phosphatam stable analogs of phosphoserine. 

The incorporation of the phosphonate isostere (1) (L-2-amino4phosphonobutanoic acid = Abu(P)) of 

0-phosphoserine 2 into the tripeptide sequence H-Leu-Abu(P)-Glu-OH (3) via solution phase peptide synthesis 

2 using t-Boc strategy has recently been reported. This synthesis employed opticslly pure L-Boc- 
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Abu(POsMe&OH (4)? prepared in seven steps from LBoc-Asp-OtBu, as a building block. After assembly of 

the protected peptide Boc-Leu-Abu(~3Mez)_n)~H (5) the Boc and benzyl ester groups were 

removed concommitantly via acidolytic hydrogenolysis. The methyl phosphonate ester was then cleaved with 

excess trimethylsilyl bromide (IMSBr) to give phosphonopeptide 3 ht excellent yield.’ This solution phase 

methodology was unsuitable to our pmposes of preparing diverse phosphoqxp&es of significant complexity 

andlength.sTothisendwecleariyrequiredtheus+ofasolidphasepeptidesynthesis(SPPS)mahodand 

decided upon the simpler and more pmctkal Fmoc-SPPS strategyp This then ma&ated thesymheskofthe 

protected Pmoc ammo acid phosphonate 6. Adapting the described synthesii of 4 for 6a shnply hwolves 
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introduction of the Fmoc group instead of Boc in the final step. Upon repeat@ the reported synthesis, 

however, certain drawbacks became apparent.’ As a result we turned our efforts to an asymmetric synthesis 

which could provide multigram quantities of both enantiomers of Fmoc amino acid phosphonate 6. A method 
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was desired which would also provide flexibility with regard to the nature of the ester protection for the 

phosphonic acid function. The ally1 group was deemed most desirable since ally1 phosphate esters can be 

removed under very mild conditions with palladium catalysis.* Thus, 6b became our synthetic target molecule. 

Simple rWrosynthetic analysis indicated that the fundemental elements of 6b would be available by a route 

involving the coupling of a glycine anion synthon with a bromoetbylphosphonate ester 7b. Among the various 

chiral glycine equivalents we found Sch6llkopf’s bislactim ether to be very attmctive.9 Both enantiomers (-)-8 

L-6 

Scheme 1. 
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(derived from D-dine) and (+)-8 (derived from L-dine) can be purchased’O or readily synthesized making 

respectively both L snd D- ammo acids equslly accessible. The hydrolysis of the bislactim ether function to the 

conespom@ amino ester can be performed with very mild acid. However, the subsequent vigorous acid 

hydrolysis of the carboxylic ester typically used to form the amino acid is not compatible with maintaining 

phosphonic ester functionality. In fact, SchWkopf has described the synthesis of the antipode of 1 from 7a and 

(+)-8.” Nevertheless, we anticipated that, instead of the star&& acid catalyzed hydrolysis, an emymatically 

mediated carboxylic ester hydrolysis could be performed which would be compatible with phosphonate ester 

functionality. 

Our strategy for preparing both L and D enantiomers of 6b has been realized as depicted in 

Scheme 3. An elegant and very practical synthesis of simple and mixed esters of starting material 7 had already 

been described.t2 From the known dichloride 10 tbe diallyl ester 7b was easily pnpared (Scheme 2).13 
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Addition of 7b to the lithium salt of (-)-914 under the described conditior@ in THP gave the two dia#mmma’s 

12a and 12b in ca. 85:15 ratio. I5 Although the ratio could be impmved to 93:7 after chromatographic 

purification, we were intrigued by the reported” Bectivity of >98% in the coupling of 78 with 8b. 

We reasoned that the reactive species might be the vinyl phosphomtc 11 (Scheme 2).16 Attempts to coupk the 

lithium salt of (-)-9 with 11 under various conditions were unsuccessfid due to competing polymerb!ation.17 

However, when an @molar solution of 7b cmtking 10% of 11 was added to the lithium salt of (-)-9, 

diastcmomer 12a ([ulDm= -1.7.01.2 in MeOH) obtakd in good yield to the virtual exclusion of 12b.l’ Mild 

acid hydrolysis of the bislactim ether function of 12a afforded amino ester 13 ([aID% +ll.O. 01.7 in MeOH) 

in excellent yield. When 13 was subjected to chymotqk~ in phosphate buffer at pH 5.5 over several days at 
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Scheme 2. 

37T the slow but clean hydrolysis to amino acid 14 ([aID 20.. +9.7, ~0.65 in HzO) was virtually complete. 

Using standard conditions 14 was convuted to the corresponding N-Fmoc derivative L-(+)-61g in good yield. 

D-(-)-6 was prepared in identical fashion employing the enantiomeric bislactam ether, (+)-9. 
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Scheme 3. 
a. 1.0 eq. BuU, THF -78OC, 1.0 eq. .ml (90110) -78OC b. 0.25 N HCI -THF:CH&N 3:1,~r 

c. chymotrypsin KH#‘0,iNa#04, pH 5.5, 37 “C d. FmocO-N-sucdnimide acetone :H20. Rl 
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With this synthesis both enanti- of Fmoc-Abu[Po(GC!H$!H=CHa)&OH am easily 

available in multigram quantity. The facile incorporation of Abu(P) into peptides using these building blocks in 

Fmoc-SPPS has been achieved and will be reported separately. 
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